
Extension of the domain of classical logic gates
to the complex numbers

Onna A, (Also Known under Lucy)

October 2020

1 Introduction

In this document I will seek to extend the domain of logic gates to complex
numbers. There are two obvious ways to do this: Using NAND complete-
ness, and the laws of probability. Both of these approaches have benefits
and drawbacks and I cannot, at this point, determine a clear extension. The
probabilistic approach allows one to compute the probability of a system
having a certain output in some (but not all) cases. The completeness ap-
proach only requires two simple definitions to be able to describe all logical
operations of a classical computer; while the probabilistic approach requires
multiple.

1.1 Note on a desired property

There is property which is arguably the most important property for an
extension like this to have. I am not sure if it is possible. Given the set of
all systems of logic gates which produce the output of another system, Sgate,
for example the following set of NAND gates:

O = (A NAND A) NAND (B NAND B)

produces the behaviour of an OR gate; so O ∈ SOR. Said simply, the exten-
sion should produce the same truth table if it produces the same truth table
for binary inputs.

1



The property mentioned, is that the function generated by all systems in Sx

is the same function. This will be true when binary values are entered into
the system, for all possible extensions. However it is not necessarily true for
non-binary inputs. Imagine the extension that maps

AND: R2 → R
(a, b) 7→ a2b2

OR: R2 → R
(a, b) 7→ a + b− ab.

This is a valid extension as all logic gates or systems of logic gates produce
the correct binary output with a given binary input. However over the reals
it does not satisfy the function property. The two systems of logic gates:

O1 ∈ SOR = A OR B

O2 ∈ SOR = (A AND A) OR (B AND B)

Are equivalent as they produce the same truth table for a given binary input.
However if we look at their extensions

A OR B = a + b− ab 6=
(A AND A) OR (B OR B) = a4 + b4 − a4b4

which shows it does not satisfy this property as by definition O1 ∈ SOR and
O2 ∈ SOR. However also by definition all systems in a set must map to the
same function, which they do not.

Unfortunately neither of the two possible extensions found in this document
have this property, nor do I know if any possible extension has it. However I
am sure, if such an extension exists, it is a front-runner for the most natural
extension.

It may be helpful to think of a domain extension to be a mapping from a
system of logic gates to a complex valued function. If this is the case one can
simply verify for all sets of systems. Where o is some desired behaviour (such
as the binary truth table for this system) ∀o∃So, ∀x, y ∈ So, x(·) = y(·). If
this is true, the property is verified.

2



2 Probabilistic approach

The basic laws of probability are well developed and provide a pretty natural
extension to the idea of logic gates. It just so happens that if you have two
independent events, A and B. The probability of A and B happening is A∗B.
This fits into the idea of logic quite nicely in an unexpected way. If A and B
are both guaranteed to happen, then A and B is guaranteed to happen. If B
or A is guaranteed to happen, then A and B is guaranteed not to happen. If
you continue with this logic and create a sort of truth table for probability.
You will find NOT A, A AND B, A OR B, A XOR B, A NAND B, and so
on all line up with traditional logic. However the probabilistic definitions of
these functions are defined over the domain [0, 1] and can in fact be extended
to all complex numbers, however outside the stated range it loses its tie to
probability.

Unfortunately in some systems of logic gates, such as in a binary adder, (or
simply something like A AND A = 1 no matter what A is), the gates rely
on each others output and are so not independent events. As far as I can
tell it is impossible to calculate the extended domain with dependant events
included without knowing the set of all possible outputs before hand, thought
statistics isn’t my strong suit so this may be false..

To remedy this all inputs and all gates will be assumed independent (even
when they are clearly not). This can be done because for the binary val-
ues 1 and 0, whether the gates are dependant is actually irrelevant in the
calculation and so it possible to make this shortcut.

2.1 Definitions in the probabilistic approach

Throughout the document I will use S to be set of all possible combinations of
logic gates and Sx to be a particular combination of logic gates. For example
SOR would be the equivalent of an or gate.

Note to self, look into: if you imagine x here to denote a binary table encoding
the logical statement of the set of logic gates. Two natural questions come up.

1. With a continuous extension of the domain of Boolean logic, does every
arbitrary valid(no repeated rows, no repeated definitions) rows encode some
logical statement(i.e. set of logic gates).

3



2. If the above statement is true, is there an equivalent binary truth table
for every extended truth table.

Secondly I will define Pl to be a mapping between some system of logic gates
(defined below), S, and so Pl(S) is the function mapped to by this extension
given S. For brevity we can ignore the arguments of the functions, as different
systems will end up with functions with a different amount of arguments. For
example Pl(SAND) = a ∗ b. Note that a and b are just dummy variables.

AND: C2 → C
(a, b) 7→ ab.

OR: C2 → C
(a, b) 7→ a + b− ab.

XOR: C2 → C
(a, b) 7→ a + b− 2ab.

NAND: C2 → C
(a, b) 7→ 1− a− b + 2ab.

NOT: C→ C
a 7→ 1− a.

The definitions above have the property that, for inputs in the range [0, 1],
and a subsection of all possible systems, Q the output given by Pl(Q) is
equivalent to the probability of the output of the system given a uniformly
random input in the system.

2.2 Single variable inverse gates

From the gate definitions it is possible to come up with so called ’inverse
gates’. They are very useful in determining the properties of some systems.
Over the complex numbers there are infinitely many possible inverses of

4



course, this will be discussed later as I conjecture it is possible to determine
all possible inputs given your output. I have proved it is possible in some
cases.

If one has a logic gate L, on output O, and a set of complex numbers Z|ZLZ =
O. We can call Z the set of single variable inverses to L, or Li

NOTi(O) = {z : O + z = 1}
ANDi(O) = {z : z2 −O = 0}

ORi(O) = {z : z2 − 2z + O = 0}
XORi(O) = {z : 2z2 − 2z + O = 0}

NANDi(O) = {z : 2z2 − 2z + 1−O = 0}

We can also define single variable inverse functions, which output a single,
real, element of this set. These functions will be defined as follows:

AND(−1) : C→ C
O 7→

√
O

OR(−1) : C→ C
O 7→ 1−

√
1−O.

XOR(−1) : C→ C

O 7→ 1−
√

1− 2O

2
.

NAND(−1) : C→ C

O 7→ 1−
√
−1− 2O

2

NOT(−1) : C→ C
a 7→ 1−O.

5



Using this information you can deduce an inverse of any system of logic gates.

Note that the inverse of OR is a quadratic, and I used the real solution
that I did for the function because it comes to a nice answer: OR(−1)(O) =
NOT(AND−1(NOT(O)))

Also note that the inverse of NOT is NOT.

*Note to self: TODO: one can use functional analysis here, and treat the
logic gates as operators and do things like L2, L−1, L0.5. This will allow for
some interesting results and easier handling of some systems.

2.3 Multiple gate applications

Imagine a gate as an operator which can take two values and transform it
into a single value. What would repeated application of this operator do.
Here we take the example of AND. I will do a short proof to show this:

Base case:

AND(1)(a, b) = ab (1)

N+1 case:

AND(n+1)(a, b) = (2)

AND(AND(n)(a, b),AND(n)(a, b)) = (3)

AND(n)(a, b)2 (4)

and given repeated squaring is the same as exponentiation by a power of two
it is clear that:

AND(n)(a, b) = (ab)2
n−1

(5)

While this works for natural numbers, extending the domain of n is interest-
ing in of itself. Negative integers coincide with repeated applications of the
inverse *prove here*, while

6



AND(−1)(a, a) =

(a2)
2−2

=

(a)2
−1

=
√
a

gives us the single variable inverse defined earlier.

Interestingly, due to the nature of repeated application of multiple variable
functions, the 0th application of the function is equal to the geometric mean
of the two inputs. We will fix this in the next section with a unique math-
ematical structure, with properties allowing true repeated applications like
those in the not gate.

All of the gates defined above can be given the same treatment. Below is the
formula for the repeated application of the NOT gate.

*prove later*

NOT(n)(x) =
1

2
−
(

1

2
+ x

)
· (−1)n

– section not finished-

2.4 Polynomial encoding

The extension defined by the probabilistic approach can be thought of encod-
ing arbitrary systems of logic gates into polynomials of N variables, where
N is the number of inputs to the system. As an example The system of logic
gates NOT(AND(NOT(a), OR(a, c))) is mapped to a polynomial as follows
by directly using the definitions of the functions.

Sk = NOT(AND(NOT(a),OR(a, c)))

Sk 7→ 1− a− c− 2ac + a2 − a2c

The most natural question arising from this is ”Does there exist a mapping
between all sets of logic gates and all integer polynomials of N variables. In
more logical terms:

7



∃k | Sk 7→ P, P ∈ Z[x1, x2, ..., xn], n ∈ N+

This is false as for all systems of logic gates, their binary truth tables produce
binary outputs. This would mean that the polynomial generated will always
have a value at 0 or 1 when their variables are 0 or 1. This is not true for
all polynomials. However this question can be narrowed to avoid this simple
counterargument:

∃k | Sk 7→ P, P ∈ Z[x1, x2, . . . , xn], n ∈ N+,

P (0, 0, . . . , 0) = 0 ∨ 1,

P (0, 0, . . . , 1) = 0 ∨ 1,

...

P (1, 1, . . . , 1) = 0 ∨ 1

This question is significantly harder to answer. . .

8


